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ABSTRACT

The master problem in Benders's partitioning method is an integer
program with a very large number of constraints, each of which is usually
generated by solving the ihteger program with the constraints generated
earlier. Computational experience shows that the subset B of those
constflt;ts of the master problem that are satisfied with equality at
the linear programming optimnum often play a crucial role in determining
the integer optimum, in the sense that only a few of the remaining
inequalities are needed. We characterize this subset B of inequalities.
Though the best upper bound (often attained) on the cardinality of
B is 2p, where p is the number of integer-constrained variables that
are basic at the linear programming optimum, none of the inequalities
in B is implied by the remaining inequalities of the master problem.

We then give an efficient procedure for generating an appropriate subset
of the inequalities in B, which leads to a considerably improved version

of Bendcrs's method.
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BENDERS'S METHOD REVISITED

by

Egon Balas and Christian Bergthaller

1. Introduction

Consider the mixed integer program

min cx + gy
(P) Ax + Dy = b
x20,0Zy<a,
ye (2
and its linecar programming relaxation (LP), obtained by removing the
condition yeQ. Here Aism X r, Dism X n, and R C R" 1e an arbitrary finite

set.

Benders [ 1 ] has shown that (P) is equivalent to (in the sense of

having the same y-component for an optimal solution, as)

min w

o
(Pl) v, > (s - ukD)y + ukb keS
0 5 -y + ¥ keT

qQ 2y2>0, yeQ

where S wd T are the index sets for the extreme points and extreme

direction vectors, respectively, of

U= {uer"|uA < ¢} .




For any chn, consider the pair of dual linear programs

(LP(y)) min{cx|Ax = b - Dy, x > 0}
and

(D(y))  max{u(b - Dy)|uA < c} .

The standard procedure (also due to Benders) for solving (P) by
using the above equivalence is to consider a relaxation (;1) of (Pl)’
which consists of minimizing v, subject to q >y >0, yeQ, and some of
the constraints indexed by S and T. At the start, the only constraints
of (;l) may be q >y >0, yeQd. A sequence of the following two steps
is then applied.

1. Solve the current (31). Let (wt, yk) be the optimal solu-
tion obtained. Go to 2.

2, Solve (LD(yk)). T.et uk be an optimal extreme point of U, if
one exists; or else, let uk be an extreme point, and vk an extreme direction
vector, such that uk + kvko, ¥ ) >0, and vk(b - Dyk) > 0. 1In both cases,
uk defines for (51) a constraint of the type indexed by S, while in the
second case, vk also defines a constraint of the type indexed by T. Add
these constraints to (31) and go to 1.

At every iteration, the minimum wt of the current (il) provides
a lower bound on the value of an optimal solution to (Pl)’ while
uk(b -Dy™) + 3yk obtained from solving (LD(yk)), provides an upper

bound. The lower bound w: is monotone increasing. The procedure stops

when the upper and lower bounds become equal.




The main difficulty with the above procedure is that in order
to generate the subset of inequalities of (Pl) required to identify
an optimal y, one has to repeatedly solve problems of the form (;i).
a computationally difficult task., It is therefore of interest to find
other ways of generating constraints for (-1). In one such attempt,
D. McDaniel and M. Devine [2] have temporarily removed the constraint
yeQ from (Fl) in the above two-step procedure, i.e., have temporarily
replaced (31) by its linear programming relaxation. This change amounts
to applying Benders's procedure to (LP) instead of (P). In the process
of solving (LP) by Benders's procedure, a subset of the inequalities of
(Pl) is generated. Furthermore, it was found that using these inequalities
to define the initial problem (51) in Benders's procedure as applied to
(P), has resulted in finding an optimal solution to (P) in a few iterations,
often just one {2].

This suggests that the set of those inequalities of (Pl) that are
tight for (;o' ;), where (;, ;b is an optimal solution to (LP) and ;; =cx + j;,
or some appropriate subset of this set, is a highly desirable starting
point for Benders's procedure, and may in fact yield an optimal solution
to (P) in one or two iterations. The index set for these inequalities will

be denoted by S(;S, i.e., we define
S(y) = {k¢8|;; = (g - ukb);'+ ukb}.

In this paper we describe a new version of Benders's procedure,

which is a considerable improvement over the original one. First, we
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charact :rize the subsystem of those inequalities of (Pl) indexed by

S(;), in terms of the simplex tableau associated with the optimal solu~

tion (, y) to (LP). The cardinality of S(y) is bounded by 2P, where p

is the number of basic components of ;. This is a best possible bound,
which s attained quite frequently. Thus the optimal solution (;;, ;) to
(LPI), the linear programming relaxation of (Pl)’ is usually highly

degene ate (2P is usually considerably larger than n + 1, the number of
inequa ities that have to be satisfied with equality by any basic solution).
Nevertieless, we show that none of the inequalities indexed by S(;) is
redund.int, in the sense of being implied by the remaining inequalities

of (P] . Thus each of these 1nequalities may be needed to define an optimal
soluti n to (Pl)’ though only p + 1 inequalities are needed to define, to-
gether with the inequalities v >0o0ry< 9 for the nonbasic components of
;, the optimal solution (;;, ;) to (LPI)' We give a procedure which generates
as many of the inequalities indexed by S(;) as desired, at the cost of

one pivot for each inequality, except for the first one, which requires p
pivots. The improved Benders ilgorithm then consists of first using the
above procedure to generate an initial constraint set for (Pl)’ namely

an appropriate subset of the set indexed by S(;), and then coantinue as
usual. Computational experiments to determine the optimal number of initial

constr.ints to be generated are under way.
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2. The Binding Constraints of (LPI)

An optimal basic solution (x, ;) to (LP), with the basic and
nonbasic components of x and y indexed by Ix' Jx and Iy, Jy respectively,

can be represented in simplex tableau format as

z =8+ T aoj(-x)+ T aoj(-yj)

]
ij‘ jeJy
(1) x, =a._ + L a  (-x)+ L a, (-y), fel_ ,
i io ye3, £3° 3 j“]y 13" 3 x

y, = & + £ a, (-x)+ £ a, (-y,) , iel_,
1" “to j‘inj j Juyij 1 y

where a , < 0, ¥ jeJ,, and where (x, y) is defined by

o 'io 1¢Ix
E 0 Wt
and
& uly'
;1 - 0 1ch s 8 <0
9y 10.!, . 'ot >0

Here 'oo = cx + g;. the value of the optimal solution (;, -y-), to (LP).
Note that x is an optimal solution to (LB(Y)), ' while (;o, R
where ;o -a is an optimal solution to (LPI). the linear programming
relaxation of (Pl) (i.e., the problem obtained from (Pl) by removing

the condition yeQ). ;

We will assume that A is of full row rank. Whenever this is not
the case, unit vectors corresponding to artificial variables with appropriate

costs can be introduced in order to make the assumption hold.
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Now consider x. As a (basic) optimal solution to (LP(;)), x
is clearly degenerate, since substituting ; for y in the righthand side vector of

(LP(y)) sets all the basic variables corresponding to the rows indexed by Iy in

tableau (1) equal to zero. Thus there is more than one basis that can
be associated with X. Actually, every basis obtained from (1) by a
sequence of \Iyl pivots, each of which replaces some Yy 1er, with some
Xy jed s produces an optimal basic solution to (LP(Y)). Not every such
basis, however, corresponds to a feasible solution to (LD(;)), i.e., to
a point ueU. Those bases associated with x that correspond to feasible
solutions uk to (LD(;S), i.e., to (extreme) points uk of U, define the
inequalities of (Pl) indexed by S(;). These are the inequalities that we
wish to generate.

Let R = {1,...,r} and N = {1,...,n} be the index sets associated
with x and y respectively, rad lel Ny = {jgﬂ\;’ - 1},

Consider a sequence of simplex tableaus and pivots defined by

the following rule. Let the kth tableau be

k k k
z =a_+ L a  (-x,) + L., a_ (-y,)
00 J‘J: OJ J ijk OJ j
y
K K K k !
(2) x, =a, + L a,(-x,)+ T  a,  (-y,) , iel
i~ %o ij: 137"y J.Jl; 13'7y x

ik k k k

= ] ch




where the starting tableau, corresponding to k = 0, is obtained from (1)
(o] . o = d = = 4
by setting '13 = '1j’ ¥1, 3, 1 #0; Iz Iz and Jz Jz for z = x, y;

and

a, =a, + L a

(o] o}
q , 1eI_UI_U{o0}.
io io J‘N1 o’} %oy

The pivoting rule for the kth tableau is to choose 1*013 and pivot

either on a , where j. is defined by

k
k

‘aojll |aoj
e e T

143: x %3 1,1
or on a j.° where j2 is defined by

ads

k

a k

o) l‘
(4) -‘-F-?-‘ - mp :-" .

|a1*32| jeJxlai*J 0 |"1*3|

Note that upper bounds don't play any role in this rule: Yy
- *

{e always pivoted out of the basis at its lower bound of 0, and when

< 0, then x, enters the basis with a negative

the pivoting occurs on a
14dy 12

value, 1.e., is decreased rather than increased from its lower bound of O.

0
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Theorem 1. For any sequence of k pivots following the rule defined by

#
(3), (&), where 0 - k - \I;I,
k k
(5) Yo * L k‘ojyj 2 aoo
jeJ
y
is a valid inequality for (Pl)’ which is satisfied with equality by (Go, ;).
Proof. Let aj and dj denote the jth column of A and D respectively, and
let ¥ = (¢, g). If Bk denotes the basis associated with the kth tableau
(2) and Yp stands for the vector of basic components of Yy, then in the
k
starting tableau (k = 0) we have
o -1 >
aoj = YBOBO aj - cj <0, jeJ
and
-1 o
YB Bo aj - cj 0, j:Ix .
Therefore u° = Yp B;i is a feasible solution to (LD(y)).
(<]
Further, the pivoting rules defined by (3) and (4) preserve the signs
k -1 k -1
of the coefficients .oj = y“kBk aj = cj, ijx, and of course YBkBk aJ - cj =0
holds 1or all ch: after each pivot.
Hence each vector uk - YBkB;I i{s a feasible solution to (LD(;)).
Further, we have
k k k
a . =ud, - ¥
and
i
k k
ud, - =0 ¥ jel .
g : iely
| On the other hand, for each k we have

» = B-lb = ukb b

Yoo " BLR

s k.”' < o e STTSTNETS S SR s»}{,-\,_ 2.’,\‘. *\ ‘ "\_“” f':‘.‘;"' . ':'pl o J




Thus each inequality (5) can be restated as

v, Z(g - ukD)y + ukb s

where uko; hence each such inequality is valid for (Pl)' To show that
it is satisfied with equality by (;o’ ;), we note that while each uk = YBB;
is a feasible solution to (LD(;)), it also satisfies the complementary

slackness condition
(¢ - ukA)x =0

for x = ;, which is a feasible (and optimal) solution to (LP(;)). Hence

each uk is an optimal solution to (LD(;)), and therefore
oilh - Dy) =

and adding to both sides g; produces

w =cx + gy
s gy

o i O PE LD, Q.E.D.

While each of the inequalities (5) is valid for (Pl) and satisfied
with equality by (;;, ;), these inequalities do not usually belong to
the set indexed by S(;) (or, for that matter, by S) except for the case
when k = |I;|, i, e., when I; = @, The reason for this is that the

vectors u* « Yy 8;1 obtained by fewer than |I;\ pivots are usually
k

1
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nonbasic feasible solutions to (LD(;)). To see this, note that each uk

0

may have as many as m + |J:\ positive components, whereas a basic o 1s
restricted to at most r such components; but for k < lI;l, IJ:| >r -m,
On the other hand, as the next theorem shows, all the inequalities indexed
by S(y) can be obtained from (1) by some sequence of |I;| pivots of the
above type.

Theorem 2. The constraints of (Pl) indexed by S(;) are precisely those
inequalities (5) such that J? = N, and each one of them can be obtained
from the system (1) by some sequence of \I;\ pivots of the kind defined

by (3), (4). Further, none of these inequalities is implied by the other

inequalities of (Pl)'

Proof. Sinhce A is of full row rank, every basic component of y can be

plvoted out of the basis in exchange for some component of x. When J: = N,

then I; = @, and all the col mns of Bk are columns of A, while YBk = ch.
Then uk = Ca Bil is a basic feasible solution to (LD(;)), i.e., an extreme
point of U. kSince the inequality (5) associated with each such uk was
shown to hold with equality for (;;, ;), each such inequality belongs

to the set indexed by S(;). Conversely, every inequality indexed by

S(;) is defined by an optimal basic solution uk to (LD(;)), and all such
solutions can be obtained from the system (1) by replacing the components
of y in the basis with components of x, while preserving dual feasibility.

But the rules (3), (4) are easily seen to exhaust the class of pivots

by which this can be done.

v
A s g
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12
(p-0)y <~ o9

or
py < =o(q - y) <0

which contradicts p > 0. .E.D.

Corollary 2.1. \S(;)\ < 2P, where p = \I;‘. This is a best possible bound.

Proof. There are 2P possible sequences of pivots of the types defined
by (3) and (4). It is trivial to construct examples in which both types
of pivots are possible at each step, since this is the usual case. The
numerical example at the end of the paper illustrates the point. .E.D,
The fact that 2P 15 a best bound on \S(?}\, which i{s attained more
often than not, and yet none of the constraints indexed by 8(;) is redundant,
reveals an'interesting feature of problem (Pl)’ Since n-p inequalities
of the form Yy >0 or A < 9 corresponding to the nonbasic components
of ;, are satisfied with equality by (;o’ ;"), only p + 1 inequalities of
the set indexed by S(;) are needed to define the optimal solution (;;, ;3
to (LPl). However, since none of the inequalities of S(;) are implied by
the other constraints of (Pl), they may all be needed to define an optimal
solution to (Pl). While this is certainly a possibility, empirical evidence
indicates that in most instances the size of the sat needed to identify an
optimal solution to (?1) is closer to p + 1 than to 2P, 0of course, some
inequalitias indexed by S\S(y) may also be needed.
The rule defined by (3), (4) can be used to obtain all basic
optimal solutions to (LD(;B), hence all the inequalities of (Pl) indexed

by S(y), by starting each time from tableau (1) and applying |I;| pivots.




L

However, after the first sequence of \I;\ pivots, i.e., after obtaining
the first basic optimal solution u1 and an associated tableau (2) with

I: = @, there are better ways of finding additional optimal solutions,

than by reverting to the starting tableau. A much cheaper procedure

is as follows.

Let the last tableau (2), with k = II;], be of the form

k k k
z a o+ jEJ:‘:oj( xj) + jEJl;aoj(-Yj)

2"
k k
xl = aio + jz‘:Jka“(-xJ) + EJka
X y

PRC AN u

with J: = N. This is the same as (2), since for k = |I;|, one has I; =P,

k

We recall that ‘oj £0, ¥ jeJ:. Consider now a pivot on a , Where

1.3
%%
o k k
1*¢1:\1x is any row such that ‘1*j < 0 for at least one j'Jx' and j, is
defined by

l'koj*‘ \':J‘

k
; ky k
‘ jux“i*j <0 ‘.1*3‘

= min

9

la |
*w

Remark 1. Any pivot in a tableau of the form (2'), based on the rule (9),

produces a tableau of the same form, such that

k k
(10) v, + j}:unojyj 21”

is one of those inequalities of (Pl) indexed by s(y).




o P——. o et

froof. The pivoting rule (9) replaces a basis nk satisfying
5'e - oy 20,
(10)

e,kl;lA-cSO

wvith a basis Bk-l-l also satisfying (10) (with k replaced by k + 1).
Indeed, the choice of 1*¢I:\I: guarantees the first inequality of (10),
vhile the choice of j by (9) guarantees the second one. Hence

k+1

u = B\.v}-l is a basic optimal solution to (LD(;)). Q.E.D.
1

c

Bt
Note that, in order to obtain an inequality (10) from tableau (2°),
one does not have to transform the whole tableau, but only the 0 row. 1In
other words, a single tableau (2‘) can serve for the computation of all

the inequalities obtainable by exchanging any one of the basic variables

xl, 1:1:\1:, for the appropri.te nonbasic variable "j' ij:.

3, An Improved Version of Benders's Algorithm
Theorem 1 and Remark 1 provide a way of generating the inequalities

of (rl) indexed by 8(;) at the cost of one pivot for each new inequality
except for the first one, which requires |I;| pivots.

As mentioned above, though the maximum mmber of inequalities
obtaoable from (1) 1s 2P, the number sctuslly needed to define a linear
program wi _se set of optimal solutions is the same as that of (LP)), 1o
p+ 1. This does not imply that any set of p + 1 inequalities of S(y)
defines such a linear program, only that such subsets of p + 1 inequalities
extst. One can use certain devices to choose the inequalities that one

generates 80 as to meke it very likely that ehy bolm to such & luln_ot. but
these devices have & computational cost, and even if they produce i




the desired result, it does not follow that the set of inequalities thus
obtained is an adequate representation of (Pl) in the sense of having
the same optimal solution (with ye()) as (Pl). :

Therefore, in the algorithm described below, we chose the option
of first generating t inequalities of S(y) in a relatively easy way,
where t is some integer satisfying p+ 1 <t < n + 1, and then checking
whether any additional inequalities are needed to define a linear program
that adequately represents (I.Pl). In case the test is negative, it also
delivers one of the additional inequalities that are needed. This is
repeated, if necessary, until an adequate representation of (LPI) is
obtained. At that point the problem (P,) defined by the current set of
inequalities (and the constraint y ¢Q) is solved. The solution is then
tested for optimality, and if the test fails, the ‘procedure is continued
as in the original Benders ai orithm.

To simplify the exposition, we assume that (LP(y)) is feasible
for all y generated during the procedure, i.e., that T = § in (Pl). 'm.

extension to the general case is obvious.

Modified Benders Algorithm
Step 0. Solve (LP) by the simplex method for linear programs

with bounded varisbles, and drive out of the basis every y, which is at its
lower or v-per bound. Let the optimal solution obtained be (x, ¥), let
;o -cx + 3;, and let the associated simplex tableau be of the form (1).

Make this into a tableau of the form (2), with k = 0, by replacing LIPS with

nzo-n“+ p> nqu i 1¢I:UI;U{0].
Jex,
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Set t to the desired value (p+ 1 <t <a+ 1), set § ==, and go to 1.

Step 1. If I: = @, go to 2. Otherwise, choose 1.;1: and pivot

k k
either on .1*51 or on 01*32’ where j1 and jz are defined by
k
lag, | k
3 a
(3) __.1_ = min .—OJ—

o, | seskleky >0 1oy /
and

k
120y, la¥, |
k i kd.n k
"1‘12‘ jg:l:{ni*J <0 |a1*j|

(O

respectively. Then set k =k + 1, and go to 1.
Step 2. Generate the inequality

L3 k
Y + JE'lojyj 28, -

1f the number of inequalities generated so far exceeds t, or

1:\1: =@, or l:j 20, % jd:, v tcl:\I:, go to 3.
k

Otherwise, choose id:\I: such that a;/, < 0 for some jc.l:. pivot

: i)
on .‘;, defined by
*
ok, | k
9 _;&" i3 uin ‘_,_:Jl »
lag,,| 5":":‘3 S lag 4!
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Step 3. Let W be the index set for the inequalities generated
so far. Solve the problem

, ',d,n[vo‘vo + JE.l:JyJ 2‘:o' keW; 0

I\
<
iIn
-]
=

and let (v:ﬂ. ykﬂ) be the optimal solution found.

k+1
1f v

< ;o' g0 to 4. Otherwise set k ~ k + 1 and go to 3a,

Step 3a. This is Step 3 with the folj.owing changes:
(a) yeQ to be added to the constraints of the minimization problem
(b) Fo to be replaced by B

(e) 1f w:ﬂ > B, stop: yk is optimal.

| Step 4. Solve the linear program

|
| any™*l) max{u(® - Dy**1)|uA < ¢}
(or 1ts dual (LP(y**))) and let u**! be the optimal solution found. Let
K+ K+ K+l
g - mtals, 1o - Y + &) o
If B < v:qnd Step 4 was entered from 3a, stop: (v:ﬂ, ykﬂ)

is optimal for (P,). . i
1 k+l '

IfB < v:*lnd Step 4 was entered from 3, then (v‘:.' o ) is
optimel for (LP,). Set =, k - k + 1 and go to 3a,
Otherwise, set k ~ k + 1, generate the inequality

: % k
Y + ’E.Q”y’ 2 800 *

! wvhere l:.- lt. and .:j is the jd‘ component of (u‘b -8, and go to 3

(1f Step 4 was entered from 3) or to 3a (if Step & was entered from 3a). -
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Discussion. At every iteration of step 1 a choice has to be made

between the two types of pivots defined by (3) and (4). Since the strength
of the cut obtained by a sequence of steps 1 grows with the size of the
coefficients .:o and '.:j’ jJeN, it seems reasonsble to choose the pivot
which produces the greatest increase (smallest decrease) in some weighted

sum of these coefficients, i.e., in

k k k
a =a _+ L, A, (-a ).
oo jd;j o}

As to the weights i‘j’ one would like them to be proportionsl to
probability of yj being 'oqnnl to qj in an optimal solution. However,
such information is usually not available. On the other hand, one may
have some information on the number Yy of variables y 3 that have to be at
their upper bounds in an optimal solution. If so, one can use Ay A= vy/|N|, #3.
In the absence of any inforuation of this type, a reasonable rule seems to

be touse \, = A = 1/2, ¥ §.

b

To implement the above choice rule, one can introduce a column

k
a

k
-:. 4
J ja;.i

k

with components l:J. Then the change in ¢ as a result of the pivot at

step k (i.e., the amount A = qkﬂ - ak) is

(-a¥, |
A3 = (8 - Ak =) ol
* 1,0 ¥ J o |

for ), = -’1 and j, = 52’ and A can alvays be made nonnegative. To

k ORI
accomplish this, one chooses j, = j, (i.e., ‘1*5* > 0) if '1'0 l(lt'J +1) >0,

k k
and §, = §, (1.0, .3, <0) 1f & o A(a}.J +1) <0,




Similarly, in Step 2 one has to choose a row 1.1:\1:. Again, a
reasonsble rule seems to be to maximize A = y”l - qk, which in this case

can be expressed as a function of the index i (using the same column
k

a; as above) ;
k
(-agy )
) = (af - ey —— .
.131

Here }§ 1 is the pivot column j  prescribed by (9) for row i. One
then pivots in the row i for which A(1) sttains its meximum over z:\x:.
subject to some condition defined so as to prevent the repetition of bases
(for instance, the condition may require all variables leaving the basis

to remain nonbasic for a certain number of iterations).

4, Numerical Example

Consider the probler
min x,+ "2"'3"3"'5"6 +2y7-loy'

X" x2+ ?:3-2x4+ys +2y7- Yg = 1

(P) x1-2x2-8x3+6xa ¥~ Yo+ Yg = 17

xj :o. J - 1..00.‘0; ys. y6 =0 or 15; ,7’ y' - o or s
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Step O.

The optimal solution to (LP), the linear program obtained from
(P) by replacing ”ys, . 0 or 15, Yy Vg = 0 or 5" by "0 < Yss Y <155
0'_}'7: s = 5," 1s ;j =0, J=1,...,% ;5 =6, )’6 =12, y7 = 0, y8 -
with the associated simplex tableau 1, where Nl = {8} (the index set for

the nonbasic co ponents of y at their upper bound).

' N W B, ity U [

| : e
z | -20 -1 -1 -3 -5 -2 4 w,=cx +gy-= -20

ys| 6 -1 i e B sk

|
v | 1 1 -2 -8 6 -1 1| yg=5

Tableau 1.

o
We replace a. by .10 -, + 5&15 for 1 = 0, 5, 6, and form the

column .3 = ag + ag. This , oduces tableau 2.

i B e e e Tl

z 0 -1 -1 -3 -5 -2 4 2

¥ il Lﬂ -1 1 e 2. -1 1

Y 17 1 -2 -8 6 -1 1 0

xghlolu 2,

have p - 2, n=A4 andwe wet t = & (p+1 <4 <n+1).

Step 1. We choose 1, = 5. For choosing the pivot type, we use

the rule discussed at the end of section 3, with lj =)= % » ¥ 3. ~




e

Since ego - l(a? + 1) = 0, we choose j = Jl' defined by (3).

2°0d

Pivoting on agl = ] and updating a; (by adding the new non-basic

column corresponding to ys) yields tableau 3.

: w e, e S SRt L e RS
z Tt T
x, ; i g g 2
ve L6 I a1 8 3 9. §u
Tableau 3.

1 1 1 1 1
Here I = {1}, Jom {2,3,4], Iy = {6}, Jy = (5,7,8}. Since Iy 0,
we go to 1.
Step 1 We choose i, = 6 and, since a1 - l(a1 + 1) = 31/2 >0, we
otep 1. * ’ 60 2\%63 ’

again choose j, = jl' Pivoting on 8;8 and updating a; then yields tableau 4.

: o Vi - WS P Ol L S SR

z |15 TSR . R U T 25
8 e B 8 8 8

$ T ;o2 M .38

%3 s FPRl"83 ¢ S ¥ 18
. 12 el 1 By el £1. .3
4 ¥k "X ¥ 8 8 &

Tableau 4.

F Since Ii =), we go to 2.

Step 2. From tableau 4 we generate the inequality

HRGre SO P
‘ Yot8YstEYe - BNt AV 21
' We apply 3 more times Step 2 in order to obtain t = 4 cuts.

The sequence of pivots and the cuts obtained by them are shwn in

tableaus 4-7.
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1 o B ..l e R Rt
[ 5 e
s (8 i e | Ay~ MR g o bk B8
7.1 73 19 10 2 10
i e
6 8 2 4
x, |4 ‘ " "1t 6. " -1
o aad e L
Lo L? o TR0 E] 10 2 10
Tableau 5.
) 3 11 59 7
i Ll e TR
: g Wit i e Sl B
3 16 4 38
ol el Sl il e % T 1
M A B e s I O TR e SRR
2 |~ 2 0 [ 10 10 2 10
P ; 2 B ST Tl A S
- 2 10 0 10 2 10
Tableau 6.
1 2 19
A e U T S
i e e e e TR TR
e w8 s o
9 9 9 9 $ 3 9
i grl g B Lo
i Y T 9 9 9 g 9 9
' .16 1 * T TRt Ty AN |
3" 79 9 9 9 9 9 9
Tableau 7.
j 11 2 2 23 2
gt Bl R/ T £ 9'3?-"‘3

Since we now have t = 4 inequalities, we go to 3.
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Step 3. We solve the linear program

minwo
ok R ¥ %yﬁ-%y7+-1%y8_ 15
PUE o e 13 Yo " l% y; + %% Ty 2 %
p g St §NT T l% :
»'0+—;-y5- 3% * 3"7""2‘3'Y32-%
0L ¥ Vg 515, 05y, ¥, 55

and find that its optimal solution is (ﬁo, ¥y) = (-20; 6, 12, 0, 5).

Since ﬁo > ;o = -20, we go to 3a.

Step 3a. We solve the discrete programming problem obtained
from the linear program of . ep 3 by requiring each component of y
to be equal to one of its bounds, and find the optimal solution
(G;, ¥) = (-12; 0, 15, 0, 5). We go to 4.

Step 4. We solve (LP(y)) rather than (LD(y)) by setting
0, . i 1, Yy = 03 Y - 5 in Tableau 4, and reoptimizing the

resulting linear program, as shown in Tableaus 5-6: !

1
el

Sy g1 4

.

o % B .12

z  |-20 s -7 z 12 5 >
s 02 BT 4

H e e % 5 "% 9

3 1 A W |

o o O T X, 1179 9

Tableau 5. Tableau 6.

et
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Since the optimal solution X gives cX + g; = -12 < G;, (G;, ;5
is an optimal solution to (Pl)’ and (;, ;5 is an optimal solution to (P),

with X = (5,0, 1, 0), Y= (0, 15, 0, 5), and X + gy = -12.
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Benders's Method Revisited
M
by

E. Balas and C. Bergthaller

The proof of the last statement in Theorem 2 (starting on top
of page 11) has a flaw. The Theorem itself, however, 1s correct.

Please substitute the attached proof.
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To prove the last statement of the Theorem by contradiction,
suppose that for some th(;) the inequality

h h

L L .ojyj 2 Boe

jeN

which can also be written as

(6) v+ (' - gy >u",

is implied by the other inequalities of (Pl)' Then

«hi = mtafw_ + (u"D - ©ylv, + D - @)y > kb, kes\(n}, 0 <y < g},

and this minimum is attained for the same point (;;;;) for which v, attains

its minimum in (Pl). Furthermore, the dual of the linear program in the

brackets has an optimal solution ()) satisfying

=1, A > 0;
kes-[h}kk
h -
gudj-gj, 1fj-0
:Xk(ukd - g,) ==uhd -8 1f 0<y, <q
: h E
2u dj 8y 1f ¥y =9

+ =
Denoting N = {jeN|0 < ¥y < qj}, from the above we have

%) G—=r " - Py, =0, jat
keS-{h} 3

Furthermore, any constraint with a positive multiplier )‘k must

be tight at (w_,y), i.e., A, > 0 implies keS(y).

e R L S AR TN " i
-




On the other hand, each uk, ch(;), is a basic optimal solution to

LD(;). Though the bases associated with the various uk, k¢S(;), differ

among themselves, they all have among their basic columns those columns a

i

of A which are basic in the optimal solution (;,;) to (LP)., If R* denotes

the set of these columns, then |R+| =m -~

of A (and of D). Thus, we have

oL ta eRT

for every keS(y), and hence

a7y Akui . uh)a1 =0, 1iex'.
kes-[h

Denoting

h
§=3— 1\ =u,
kes-(h} Kk

equations (7) and (7°) can be restated as

bay =0 , jeN',

(8)
éai =0 , icR+,

|N+|, where m is the number of rows

where |N*| + |R*| = m, and where the m vectors d;, a; are linearly

independent, since they are the columns of the basis associated with

(x,y).

Thus the unique solution of (8) is 6 = 0, and from (7) this implies

that the vectors uk, ch(;5 are linearly dependent, contrary to the

Q.E.D.

assumption that they are extreme points of U.
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